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1,2-Bis(2,5-diphenylphospholano)methane, a new
ligand for asymmetric hydrogenation
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Abstract—1,2-Bis(2,5-diphenylphospholano)methane (Ph-BPM) has been prepared in good yield from 2,5-trans-diphenylphospho-
lane–borane adduct. Rhodium and ruthenium complexes of this ligand have been prepared and their usefulness in asymmetric
hydrogenation has been investigated. [Ph-BPM Rh(COD)]BF4 showed high activity and selectivity for itaconate and dehydroamino
acid hydrogenation. Ph-BPM RuCl2(DPEN) was effective for imine hydrogenation.
� 2007 Elsevier Ltd. All rights reserved.
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Asymmetric hydrogenation has been readily adopted as
a method of choice to provide single enantiomer prod-
ucts by both industry and academia. Many ligands
and catalysts are now commercially available and
numerous applications have been reported.1 There is
still a need to develop new catalytic systems with
improved activity and selectivity.

Recently, a series of 1,2-bis(alkylmethylphosphino)-
methanes 1 (abbreviated as MiniPHOS, alkyl = tert-
butyl, cyclohexyl, isopropyl, phenyl) were prepared
and their use was demonstrated in the Rh(I)-catalysed
asymmetric hydrogenation of dehydroamino acids and
itaconate derivatives.2 Rh(I) complexes of these ligands
have also been used in the enantioselective hydrogena-
tion of enamides3 and (E)-b-(acylamino)acrylates.4 In
addition, Pfizer has reported a novel methylene bridged
ligand 2, which has three hindered quadrants (one of the
methyl groups of MiniPHOS has been replaced with
tert-butyl).5 This ligand is also highly effective for the
Rh(I)-catalysed asymmetric hydrogenation of dehydro-
amino acids. In general, these methylene bridged ligands
show good activity for asymmetric hydrogenation.

We demonstrated that the ligand, 1,2-bis(2,5-diphenyl-
phospholano)ethane (Ph-BPE) 3, exhibited enhanced
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activity and selectivity over the existing members of
the BPE ligand family in rhodium-catalysed asymmetric
hydrogenation.6 As a result of this we have investigated
the synthesis and applications of the methylene bridged
analogue, 1,2-bis(2,5-diphenylphospholano)methane
(Ph-BPM) 4 (Fig. 1).

A single enantiomer of 1-hydroxy-1-oxo-2,5-trans-
diphenylphospholane 5 was prepared using the literature
procedure.7 The phosphinic acid was reduced using phen-
ylsilane in toluene to give (R,R)-2,5-trans-diphenyl-
phospholane–borane adduct 6 (Scheme 1). There are a
variety of potential methods for converting compound
6 into (R,R)-Ph-BPM. Unfortunately, direct reaction
with dibromomethane was unsuccessful. The reaction
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Figure 1.
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Scheme 1. Reagents and conditions: (i) PhSiH3, PhMe; (ii) BH3ÆMe2S
(83%).
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Scheme 2. Reagents and conditions: (i) (CH2O)n, KOH, MeOH (86%);
(ii) MsCl, DIPEA, THF (90%); (iii) Tf2O, Et3N, DCM (90%).
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Scheme 3. Reagents and conditions: (i) n-BuLi, THF; (ii) 8 (12%) or 12

(61%); (iii) DABCO, PhMe (99%).
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Figure 2.

Table 1. Hydrogenation using [(R,R)-Ph-BPM Rh(COD)]BF4

Entry Substrate S/C Conditions Conv. (%) ee (%)

1

O

MeO
O

OMe 10,000 MeOH, 30 �C, 10 bar H2, 15 min 100 99.5 (R)

2

MeO2C
CO2

- t-BuNH3
+

1000 MeOH, 30 �C, 10 bar H2, 6 h 100 91 (R)

3 AcHN
O

OMe
5000 MeOH, 30 �C, 6 bar H2, 1 h >99 >99 (S)

4 AcHN
O

OH
5000 MeOH, 30 �C, 6 bar H2, 75 min >99 >99 (S)

5
AcHN

Ph

O

OMe 3000 MeOH, 30 �C, 10 bar H2, 18 h >99 99 (S)

6

CO2HN
Boc

Cl
Cl

200 MeOH, 30 �C, 10 bar H2, 18 h 96% 95 (R)
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Table 2. Hydrogenation using [(R,R)-Ph-BPM RuCl2(S,S)-DPEN

Entry Substrate S/C/B Conditions Conv. (%) ee (%)

1

N
Ph

200:1:10 iPrOH, 60 �C, 10 bar H2, 5 mol % KOtBu in tBuOH, overnight >99 71

2

N Ph

100:1:5 iPrOH, 60 �C, 10 bar H2, 5 mol % KOtBu in tBuOH, overnight >99 82

3 N

MeO

MeO
100:1:10 iPrOH, 70 �C, 10 bar H2, 10 mol % KOtBu in tBuOH, overnight 100 89
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was attempted using both borane adduct 6 and the
corresponding free phosphine.

The methylene bridge was introduced via hydroxy-
methylation of compound 6 using formaldehyde (Scheme
2).8 In our first approach to produce Ph-BPM, the
hydroxy group of compound 7 was converted into
mesylate 8 which was then reacted with compound 6
to give Ph-BPM borane adduct 9 (Scheme 3). Yields
were low and the reaction gave a complex mixture of
products with the only identifiable impurity being the
methylated compound 10 (Fig. 2).

The addition of TMEDA to the lithiated diphenylphos-
pholane–borane adduct, prior to addition of the mesy-
late, resulted in an improved yield. The initial product
11 contained only one BH3. This was removed by treat-
ment with DABCO to give (R,R)-Ph-BPM 4 in 26%
overall yield for the two steps. Whilst being far from
ideal this enabled the preparation of synthetically useful
quantities of the ligand. Use of triflate 12 instead of mes-
ylate 8 resulted in a vastly improved yield of borane
adduct 9. Deprotection using DABCO in toluene gave
(R,R)-Ph-BPM 4 in near quantitative yield. This
improved method is now suitable for preparation of
multigram quantities of the ligand.9

[(R,R)-Ph-BPM Rh(COD)]BF4 was prepared by reac-
tion of the ligand with [Rh(COD)2]BF4 in dichlorometh-
ane.10 Good activity and selectivity was shown for a
number of common substrates, including dimethyl itac-
onate, methyl acetamidoacrylate, acetamidoacrylic acid
and methyl acetamidocinnamate (Table 1).11 The pre-
catalyst (R,R)-Ph-BPM RuCl2(S,S)-DPEN was pre-
pared for use in imine hydrogenation (Table 2).12

(R,R)-Ph-BPM RuCl2(R,R)-DPEN was also prepared
but showed inferior selectivity. N-(1-Phenylethylid-
ene)aniline was hydrogenated with moderate selectivity,
alternative catalysts for this substrate have been
reported.13 N-(1-Phenylethylidene)benzylamine was
hydrogenated with good selectivity, comparable with
the best literature results.14 1-Methyl-6,7-dimethoxy-
3,4-dihydroisoquinoline was hydrogenated with good
selectivity. This substrate has also been hydrogenated
successfully under transfer hydrogenation conditions14

and using iridium catalysis.15

1,2-Bis(2,5-diphenylphospholano)methane (Ph-BPM)
has been prepared in good yield from 2,5-trans-diphen-
ylphospholane–borane adduct. The route developed
is suitable for the large scale synthesis of this ligand.
[Ph-BPM Rh(COD)]BF4 demonstrated excellent activity
and selectivity for itaconate and dehydroamino acid
hydrogenation substrates. Work is in progress to iden-
tify new applications for this ligand and to further
extend the phenyl phospholane ligand family.
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